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Abstract
A growing body of evidence indicates that the microbiome interacts with the central nervous

system (CNS) and can regulate many of its functions. One mechanism for this interaction is

at the level of the blood–brain barriers (BBBs). In this minireview, we examine the several

ways the microbiome is known to interact with the CNS barriers. Bacteria can directly

release factors into the systemic circulation or can translocate into blood. Once in the

blood, the microbiome and its factors can alter peripheral immune cells to promote inter-

actions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria

and their factors or cytokines and other immune-active substances released from peripheral

sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change

BBB transport rates, or induce release of neuroimmune substances from the barrier cells.

Metabolic products produced by themicrobiome, such as short-chain fatty acids, can cross

the BBB to affect brain function. Through these and other mechanisms, microbiome–BBB

interactions can influence the course of diseases as illustrated by multiple sclerosis.
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Introduction

Evidence shows that the gut microbiome communicates
with the central nervous system (CNS).1 Early research on
the communication between the gut and the CNS predom-
inantly focused on gastrointestinal hormones and enteric
nerves as routes for cross talk.2–6 A growing body of evi-
dence supports that these routes of gut–brain communica-
tion are influenced by the microbiome, as has recently been

reviewed elsewhere.7–10 In this review, we will discuss how
gut microbiome interactions with the peripheral immune
and neuroimmune systems involve the blood–brain barrier
(BBB).

Gut microbes may affect their host by reprogramming
immune cells,11 promoting cytokine secretion,12

manufacturing bacteriophages,13 translocating into the sys-
temic circulation,14 and in some cases moving across the
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BBB.15 Gut bacteria release factors and metabolites into the
blood that can readily cross the BBB or otherwise interact
with barrier cells and so affect the CNS.9,16 A nearly 40-
year-old example of this are muramyl peptides which are
derived from bacteria and appear in both urine and brain
and promote sleep.17,18 Bidirectional communication
between gut and brain may alter cognitive func-
tions8,10,14,19,20 and can also play a vital role in mediating
stress-related behaviors, such as anxiety and depres-
sion.19,21,22 The complex communication between the gut
and the brain has recently become a popular topic for the
development of effective therapeutics for CNS disease. To
better treat CNS diseases, more focus should be given to the
interactions between the gut microbiome, the peripheral
immune system, and CNS barriers.

Gut–immune interactions and their
contributions to host immunity

The distal gut of mammals hosts an enriched, highly
diverse bacterial ecosystem which comprises a major por-
tion of the microbiome. Bacteria have symbiotic relation-
ships with their hosts and begin to populate the gut soon
after birth,23 perhaps even during gestation.24

Approximately 70% of the immune system also resides in
the gut; therefore, gut microbial-host interactions are
important in the development and maintenance of host
immunity.25,26

The majority of gut microbes reside within the lumen of
the intestines, which is lined by epithelial cells that form a
barrier to and an interface for host–microbial interactions.
Disruption of the gut epithelial barrier may permit the
unregulated translocation of gut microbes into the lamina
propria, which is where most of the immune cells within
the gut reside (Figure 1(i)). Immune cells reside in orga-
nized structures of the gut, which include Peyer’s patches,
isolated lymphoid follicles, and mesenteric lymph nodes
within the lamina propria which are collectively referred
to as gut-associated lymphoid tissues (GALT).27 The GALT
is highly adaptive and can tolerate, and regulate, coloniza-
tion by commensal bacteria.

The immune system within the gut includes lympho-
cytes and resident macrophages that are dispersed
throughout the lamina propria and basal epithelium.
Resident macrophages in the gut are largely unresponsive
to commensal bacteria and their components, as they lack
the lipopolysaccharide (LPS) co-receptor and pro-
inflammatory responses are suppressed by anti-
inflammatory cytokines produced by the GALT.28 The
GALT is a site where T-cells have been shown to respond
to glycoprotein autoantigen presentation, or become influ-
enced by the direct communication with the innate immune
system (Figure 1(ii)).7 Translocated microbial antigens may
encounter dendritic cells, which present the antigen to
T-cells and B-cells to stimulate their differentiation and
maturation.27 The gut is constantly exposed to a wide

Figure 1. The microbiome communicates with immune cells throughout the body and can affect the blood–brain barrier (BBB) and CNS function. The gut lumen is

constantly exposed to bacterial factors from the outside environment. Disruption of the gut epithelial barrier may permit the unregulated translocation of gut microbes

into the lamina propria (i). Bacterial factors can infiltrate the GALT, and the blood lumen, where they interact with various immune cells, including T-cells (ii). Certain

bacterial factors can stimulate effector-type T-cell differentiation. Regulatory T-cells survey the GALT, blood, and CSF and changes to the local microbiome can

promote T-cell brain infiltration (iii). Circulating bacterial factors can upregulate inflammatory cytokine levels, affect BBB integrity and promote neuroinflammation.

LPSs are produced by bacterial factors and can act on endothelial TLRs to promote neuroinflammation and CNS disease (iv). Bacterial metabolites can upregulate

tight junction proteins and improve BBB integrity (v). Metabolites can also cross the BBB to impact glial cells and neuroinflammation. The role of the microbiome on

pericytes remains unclear (vi).

CSF: cerebral spinal fluid; CNS: central nervous system; GALT: gut-associated lymphoid tissues; LPS: lipopolysaccharide; TLRs: toll-like receptors.
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repertoire of antigens derived from food and microbes;
therefore the resident immune system must be highly
specialized.

The gut microbiota plays an important role in Th17 cell
differentiation, an important class of CD4þ helper T-cells,
and their infiltration into the brain (Figure 1(iii)).29,30

Further, the impact of the gut microbiota on immune cells
is not limited to T-cells. In a study by M€ohle et al., it was
found that antibiotic-induced dysbiosis increased levels of
Ly6Chi monocytes in the brain, and this increase was asso-
ciated with improved neurogenesis and memory
retention.31

Microbiome dysbiosis may occur in response to coloni-
zation by pathogenic microorganisms and/or as a result of
altered immune function. A prototypic example of gut dys-
biosis is Clostridium difcile infection; risks of contracting
such an infection are increased with the use of antibiotics
that may deplete the healthy microbiome, as well as atten-
uated immunity, such as that which occurs in the elderly.32

Depletion of CD4þ T-cells in the gut lamina propria is an
early event in acute HIV infection and persists even after
onset of antiretroviral therapy.33 T-cell depletion in HIV has
been associated with dysbiosis, disruption of the epithelial
barrier, intestinal inflammation, and escape of immunogen-
ic bacterial components into the circulation.34,35 The BBB
provides the CNS with additional protection against the
systemic circulation. In the next section, we will focus on
how changes to the microbiome can influence the structure
and function of the BBB.

Microbiota and the BBB

The vascular BBB is comprised of specialized brain endo-
thelial cells that prevent the unrestricted leakage of plasma
proteins into the CNS, and act as a regulatory interface
between brain and blood, performing nutritive, homeostat-
ic, and communication roles. Tight junction proteins,
including claudins, tricellulin, occludin, and zona occlu-
dens, are specialized features of brain endothelial cells
and restrict paracellular diffusion of substances between
the blood and brain. Disruption of tight junctions can
lead to a leaky BBB and expose the CNS to harmful sub-
stances in the circulation. BBB structural and functional
disruption has been implicated in many CNS disorders,
contributing to CNS diseases.

For decades, it has been understood that bacteria and
their cell wall constituents can cause BBB dysfunction.
Many of the studies that support our current knowledge
have been in the context of life-threatening infections that
involve or model sepsis, meningitis, and/or the systemic
inflammatory response syndrome. In the case of sepsis, the
gut microbiome plays a clear causal role when infections
arise from intestinal perforations. Sepsis is routinely mod-
eled in rodents using cecal ligation and puncture, and BBB
changes that have been reported in this model include
increased permeability, upregulated expression of cell
adhesion molecules, leukocyte and platelet attachment to
brain endothelium, and increased brain uptake of neutral
amino acids and tumor necrosis factor (TNF)-a.36–39

Bacteria known to cause meningitis can cross the BBB
through interactions of bacterial pilli or cell wall compo-
nents such as lipoteichoic acid (LTA) with the brain endo-
thelium, inducing transcytosis.40 Some CNS-tropic bacteria
may cross the BBB in the absence of disruption,40 whereas
others require disruption and/or engagement of peripheral
immune cells with the brain endothelium for CNS dissem-
ination.41 Brain endothelial cells express Toll-like receptors
(TLRs), which enable their direct responses to bacterial cell
wall components such as LPS from Gram-negative bacteria
and LTA from Gram-positive bacteria through TLR442 and
TLR2, respectively (Figure 1(iv)).42,43 LPS and LTA can also
induce the production and release of pro-inflammatory
mediators from other cell types, which then modulates
BBB function.44 BBB functions altered directly or indirectly
by LPS include tight junction expression and BBB integrity,
immune cell trafficking, permeabilities to HIV-1 and insu-
lin, efflux of amyloid beta peptide, and secretions of cyto-
kines, chemokines, nitric oxide, and prostaglandins by the
barrier cells.45–52

A recent study by Braniste et al. compared germ-free
mice (those that have never encountered a live bacterium)
to pathogen-free mice (those raised in an environment free
of monitored mouse pathogens), and demonstrated that
germ-free mice exhibited decreased expression in tight
junction proteins, occludin and claudin-5, as well as asso-
ciated evidence of tight junction deficits.53 These changes
occurred in the absence of changes in vascular density or
pericyte coverage of the brain endothelium. Moreover, col-
onization of germ-free mice with flora from pathogen-free
mice restored BBB function. Leclercq et al. found that treat-
ment with low-dose penicillin early in life led to long-term
changes in the gut microbiota and upregulated expression
of tight junction proteins.54 These data suggest certain live
bacteria can positively influence the BBB, helping to regu-
late the interaction between the periphery and the CNS.
Although germ-free mouse models are useful in establish-
ing causality in gut microbiota–brain interactions, they are
not the most clinically relevant models and care should be
taken when interpreting results.

A potential mechanism by which live bacteria influence
the BBB is by producing metabolites that can alter CNS
function (Figure 1(v)). Short-chain fatty acids (SCFAs),
such as butyrate, acetate, and propionate, are produced
through the fermentation of dietary fibers by the gut micro-
biota.55 Bacteria such as Clostridium tyrobutyricum, which
produce high levels of butyrate, have been shown to
improve BBB integrity in germ-free mice, which was asso-
ciated with an upregulation of tight junction protein
expression.53 Moreover, SCFAs were able to improve a dys-
functional BBB in germ-free mice53 and benefit the intesti-
nal barrier as well.56

Microbiome and specific cell-types
of the neurovascular unit

Brain endothelial cells interact with other closely apposed
cell types, including pericytes and astrocytes, as well as
neurons, microglia, peripherally derived immune cells,
and the basement membrane and glycocalyx. These
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components are collectively termed the neurovascular unit
(NVU), and their interactions support and regulate BBB
functions.57 In this section, we will discuss the effects of
gut microbiota on the NVU, as well as how perturbations
of the microbiome affect BBB integrity and CNS function
(Figure 1(vi)).

In addition to endothelial cells, the microbiota may affect
other CNS cell types of the NVU. Pericytes are important
contributors to BBB induction andmaintenance,58 and peri-
cyte loss has been associated with CNS disease including
Alzheimer’s55 and diabetes.59,60 To date, one study has
examined pericytes in the context of changes in the micro-
biome. In this study, pericyte numbers in the CNS were
unaffected in germ-free mice, indicating that BBB disrup-
tion in this model is not due to pericyte loss.53 Although it is
presently unclear how the microbiome could affect brain
pericyte functions, it was recently shown that tumor-
related pericytes are influenced by changes in the micro-
biome in a mouse colon cancer model.61 Further, brain
pericytes are responsive to immune stimuli such as LPS.62

As such, more studies are warranted to determine how
changes in microbiota may affect pericytes.

Astrocytes are also closely associated with the brain
endothelium and contribute to BBB integrity and func-
tion.63 In germ-free mice, there are no overt changes in
the numbers or localization of GFAPþ astrocytes in the
brain.16 However, gut metabolites may protect the BBB
under inflammatory conditions. Bacterial metabolites of
dietary tryptophan exert anti-inflammatory effects in astro-
cytes via activation of the aryl hydrocarbon receptor
(AHR), which synergizes with type 1 interferon signaling
through AHR upregulation.64 In the same study, trypto-
phan metabolites were found to lessen the disease severity
in a mouse model of multiple sclerosis (MS). As BBB dys-
function is highly implicated in MS (see below), an impor-
tant future direction to this work is to determine whether
gut metabolites of tryptophan are BBB-protective in MS,
which could be mediated by limiting immune responses
in astrocytes.

Erny et al. demonstrated that the microbiota influences
microglial function and morphology. They found that
germ-free mice had an immature phenotype, with
increased proliferative markers and morphological altera-
tions such as increased segment lengths, branching, and
contacts with adjacent microglia. Further, microglia from
germ-free mice have attenuated responses to inflammatory
stimuli.16 In the same study, evidence of immune cell traf-
ficking and perivascular inflammation was absent in germ-
free mice. These data suggest that the microbiome affects
the development and maturation of microglia; however, it
is presently unclear how microglia function in germ-free
mice or how conditions of dysbiosis affects the BBB.

A particularly interesting, yet unanswered question is
how the signals of the microbiota are transmitted across
the BBB. Many modes of communication are conceivable,
which may include (1) microbes or their components enter-
ing the brain to act on non-endothelial cells of the NVU
directly, (2) microbes or their components interacting with
brain endothelial cells to alter their functions or secretions,
or (3) microbes altering the production of peripheral

components which may directly enter the brain or influ-
ence brain endothelial cell functions or secretions.
Development of a better understanding of these mecha-
nisms is critical to the global understanding of how the
microbiome affects the CNS.

Immune cell contribution to CNS disease

For many years, the CNS was considered an immune priv-
ileged site protected by a tightly regulated BBB. The CNS
demands oxygen and nutrients and thus requires a large
supply of blood; however, the vessel walls must also be
protective against peripheral toxins and bacteria that
could disrupt normal brain function. The idea of an
“immune privileged brain” has evolved recently into an
understanding that the immune privilege of the brain is
relative and not absolute.

Indeed, blood-borne immune cells have been shown to
cross the vascular BBB and choroid plexus (Figure 1(iii)),
entering the healthy brain at very low levels,65 and T-cells
have been shown to survey the choroid plexus and menin-
ges.50 T-cells in these compartments contribute to the host
response to stress and injury. Around 80% of immune cells
in the cerebrospinal fluid (CSF) are CD4þ T-cells,66 which
are known to mediate CNS homeostasis.67,68 Interestingly,
mice without T-cells exhibit impaired learning and social
behavior.67 From these studies, we can infer that T-cells
secrete soluble factors that are carried by the CSF to brain
regions associated with rodent behavior. Interferon gamma
is one factor secreted by T-cells that has been shown to play
a vital role in rodent prefrontal cortex neurophysiology and
social behavior.69

The immune response to gut dysbiosis has been linked
to a number of CNS diseases in which BBB dysfunction is
also implicated. The gut microbiome mediates the release
of inflammatory cytokines which can activate endothelial
cells or be actively transported across the brain endothelial
cell layer and deposited within the CNS.12 The microbiota
can also manipulate T-cells in the gut, which may promote
heightened CSF surveillance and contribute to CNS inflam-
mation and aberrant behavior. Such interactions could be
especially relevant in MS, a disease in which T-cells are
thought to substantially drive CNS pathology. Known con-
tributions of the gut microbiome to MS that implicate the
BBB are discussed below.

Multiple sclerosis: Impact of gut microbiota on BBB

MS is a chronic demyelinating neuroinflammatory disease
that affects the brain and spinal cord. Immune cell infiltra-
tion causes CNS lesions that are hallmarks of MS, and is
believed to occur as a result of autoimmunity against CNS
antigens. BBB dysfunction is evident in MS and in an
animal model of MS, experimental autoimmune encepha-
lomyelitis (EAE).70

Alterations in BBB functions are important in the devel-
opment and progression of MS.71,72 Such alterations
include BBB leakiness, loss of tight junctions, and activation
of proteolytic enzymes, which can facilitate degradation of
the extracellular matrix and BBB disruption.71,73 T-cell
homing to peripheral lymphoid tissues was also shown to
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be important to the development of EAE, as T-cells that are
re-isolated after homing and injected into naı̈ve animals
cross the BBB and initiate disease more rapidly.74

The gut microbiome has been implicated in the develop-
ment of MS. Berer et al. showed that germ-free mice were
resistant to developing EAE, however the introduction of
non-pathogenic commensal bacteria in germ-free mice per-
mits EAE development.11,75 In addition, BBB transport of
TNF-a is doubled in EAE,76 which could further augment
neuroinflammation. These results suggest the gut micro-
biome contributes to inflammatory responses that influence
the course of MS.

Additionally, dietary factors may contribute to dysbiosis
and MS progression. Cao et al. demonstrated that caffeine-
free high-sucrose cola beverages enhanced EAE pathogen-
esis by worsening demyelination and increasing CNS
infiltration of Th17 cells.77 Interestingly, caffeinated high-
sucrose cola beverages counteracted the effect of the
high-sucrose on disease pathogenesis. EAE mice given
high-sucrose cola consumption exhibited numerous
enriched taxa, which have been implicated in pathogenic
T-cell responses.78–81

In addition to T-cell lymphocytes, the gut microbiome
also influences peripheral myeloid cells and more recently
has been shown to affect CNSmyeloid cells. Gut microbiota
and their metabolites have been implicated in the
pathogenesis of other autoimmune diseases, including
rheumatoid arthritis and type I diabetes, which also involve
T-cell-mediated inflammatory pathology and BBB disrup-
tion.60,73,82–84 These studies clearly suggest that changes to
the microbiome can influence CNS disease pathogenesis
through changes to the immune system.

Conclusion

A growing amount of evidence supports that the gut micro-
biome contributes to CNS function and that gut dysbiosis
may be a causal factor in a wide range of CNS diseases. The
BBB, being a predominant interface for communication
between the CNS and periphery, is a palpable site at
which signals from the microbiome may be transmitted to
the CNS. In this review, we have highlighted potential
mechanisms for such communication, as well as recent lit-
erature that has demonstrated that the BBB and NVU can
be altered under conditions of dysbiosis.

Cross-talk between the gut microbiome and the immune
system is crucial for gut–brain communication. The inter-
actions between the microbiota and immune cells can occur
at many biological sites throughout the body (Figure 1) and
can subsequently affect the brain endothelium, or even cells
within the CNS, including those of the NVU. It is now evi-
dent in pre-clinical models of MS that the gut microbiome
affects disease progression by regulating T-cell trafficking
across the BBB. The BBB and microbiome are independent-
ly implicated in a number of other conditions that affect the
CNS, including Alzheimer’s disease12,85 and diabetes.60,86

We anticipate that future work will illuminate novel
relationships of the BBB and the microbiome that drive
our understanding of how the interactions of these two
components in physiological states promote brain health

and how dysbiosis contributes to CNS disease. By develop-
ing a more comprehensive mechanistic view of gut micro-
bial effects on CNS function including those incorporating
the CNS barriers, we open up possibilities for many new
therapeutic strategies to combat some of the most devastat-
ing CNS diseases faced by society today.
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